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Abstract
Purpose of Review  Development of safe targeted therapies for idiopathic intracranial hypertension requires a thorough 
understanding of recent evidence discovering the pathophysiology of the condition. The aim is to provide a review of studies 
that inform on the underpinning mechanisms that have been associated with idiopathic intracranial hypertension.
Recent Findings  People living with active idiopathic intracranial hypertension and obesity have been found to have with 
insulin resistance, hyperleptinaemia, and adverse cardiovascular outcomes. Clinically their adipose tissue is predominantly 
located in the truncal region and on detailed laboratory analysis the cells are primed for weight gain. There is evidence of 
androgen excess, altered glucocorticoid regulation and changes in pro-inflammatory cytokines. There are distinct alterations 
in metabolic pathways found in serum, urine and cerebrospinal fluid, that resolve following disease remission. These findings 
are associated with raised intracranial pressure and are likely secondary to cerebrospinal fluid hypersecretion.
Summary  Idiopathic intracranial hypertension has a profile of systemic metabolic changes, endocrine dysfunction and 
cardiovascular risk profile distinct from that associated with obesity alone. These systemic metabolic changes are likely to 
contribute to dysregulation of cerebrospinal fluid dynamics, primarily hypersecretion but with a possible additional effect 
of reduced clearance resulting in the core feature of raised intracranial pressure.
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Introduction

Idiopathic Intracranial Hypertension (IIH) is a challeng-
ing condition characterised by raised intracranial pres-
sure (ICP), papilloedema, with risk of permanent visual 

loss and chronic headaches which reduce quality of life 
[1, 2]. IIH predominately affects young women, typi-
cally in their reproductive years [3, 4]. It is principally 
associated with obesity, which may add to stigma and 
create a barrier to management [5, 6] It is acknowledged 
that there are different spectrums of the disease: the 
paediatric condition is unlikely to have similar patho-
physiology driver as the adolescent and adult disease 
[7]. It could also be postulated that those that live with 
IIH but not obesity may have alternative instigating 
mechanisms that give rise the syndrome of IIH, such as 
venous sinus stenosis [8, 9]. As research has developed 
in this condition, there have been new data to implicate 
that those adults who live with obesity and IIH have a 
profile of metabolic changes, endocrine dysfunction and 
cardiovascular risk distinct from that associated with 
obesity alone [10]. These systemic metabolic changes 
likely contribute to dysregulation of cerebrospinal fluid 
(CSF) dynamics, summarised in Fig. 1, and give rise to 
the signs and symptoms of IIH.
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Adipose Tissue is Predominantly Truncal and Primed 
for Weight Gain

Whilst IIH is strongly associated with obesity and female 
sex, the majority of women living with obesity do not 
develop IIH. The differences in adiposity characteristics 
between people with both obesity and IIH and those with 
obesity alone have been explored. Initial reports, based on 
waist-hip circumference ratio, suggested IIH was associated 
with greater lower body adiposity compared with general-
ised obesity [11]. A subsequent study utilised dual-energy 
X-ray absorptiometry (DEXA) to more accurately charac-
terise adipose distribution in IIH and found, to the contrary, 
that the distribution was no different to control participants 
living with obesity who were matched for sex and body 
mass index (BMI) [12]. The DEXA imaging demonstrated 
a higher truncal fat:lean mass ratio in the IIH participants 
compared with controls [12]. In the literature a truncal pat-
tern of adiposity has been associated with other cardiometa-
bolic diseases [13].

An extensive study in 2021 [14] evaluated adipose tis-
sue in subjects with IIH and matched controls with obe-
sity. Subcutaneous and omental biopsies enabled detailed 
interrogation of adipose tissue. Transcriptional profil-
ing identified gene expression changes in keeping with 
lipogenesis, despite biopsies having been obtained in 
the fasting state. Metabolomic alterations also suggested 
increased capacity for uptake of branch-chain amino acids 
which could support lipogenesis. Overall these findings 
suggest adipose tissue in IIH is primed for lipogenesis and 
weight gain. A possible theory as to how this occurs may 
be the failure of the adipose organ’s plasticity to cope with 
the physiologic stimuli of rapid weight gain which induces 
the striking alterations in the adipose tissue metabolism, 
structure, and biodistribution.

IIH is Associated with Insulin Resistance, 
Hyperleptinaemia, and Adverse Cardiovascular 
Outcomes

Insulin resistance, with raised fasting insulin levels [14], has 
been observed in IIH greater than age- and BMI-matched 
controls. Insulin resistance is a well-established feature 
of the metabolic syndrome [15], which is associated with 
dyslipidaemia, type 2 diabetes and adverse cardiovascular 
outcomes. A large cohort study evaluated cardiovascular 
outcomes in 2760 patients with IIH compared to 27,125 age- 
and BMI-matched controls [3]. This demonstrated higher 
risks of cardiovascular disease (heart failure, ischaemic 
heart disease and stroke/transient ischaemic attack) with an 
adjusted hazard ratio [aHR] of 2.10 [95% CI, 1.61–2.74; 
p < 0.001]. Greater risks of hypertension and type 2 

diabetes were also found. People living with IIH also have 
an increased risk of gestational diabetes [16].

Leptin is a peptide hormone which is secreted from 
adipose tissue and has an important role in hypothalamic 
regulation of satiety and energy homeostasis. IIH patients 
demonstrate hyperleptinaemia [14, 17–19], and adipose tis-
sue in IIH patients has increased leptin secretion compared 
with BMI- and sex-matched controls [14]. High CSF leptin 
levels have also been reported in IIH [18, 19], raising the 
possibility that hypothalamic leptin resistance could be 
feature of IIH [20]. However, this has not been a consist-
ent finding [14] and its significance is therefore uncertain.

IIH is Associated with Distinct Alterations 
in Metabolic Pathways

Metabolomic analyses have been performed in IIH, dem-
onstrating changes in metabolic pathways compared to 
age- and BMI-matched controls. One study, utilising 
nuclear magnetic resonance spectroscopy, found lower 
urine urea, raised serum lactate:pyruvate ratio and changes 
in CSF ketone body metabolites in IIH participants [21]. 
Many of these changes normalised at 12-months following 
a weight loss intervention with bariatric surgery [21, 22].

A further exploration of metabolic changes in IIH uti-
lised ultrahigh-performance liquid chromatography-mass 
spectrometry to perform an untargeted metabolomic analy-
sis in serum and CSF of patients with IIH and healthy con-
trols [23]. This identified changes in acylpyruvates, with 
lower CSF level and raised serum levels in IIH. Altera-
tions in multiple lipid and amino acid metabolites were 
also demonstrated. Correlations with clinical parameters, 
including visual function, lumbar puncture opening pres-
sure, papilloedema and headache were found with some 
metabolites. These changes normalised over 12 months 
following weight loss with bariatric surgery.

Metabolic pathways have also been linked to ICP reduc-
tion after weight loss. One study evaluated ICP reduc-
tion with three different methods of bariatric surgery: 
Roux-en-Y gastric bypass (RYGB), gastric banding and 
sleeve gastrectomy [24]. It found greater reduction in 
ICP with RYGB compared to sleeve gastrectomy at two 
weeks, despite similar weight loss. Interrogating changes 
in metabolic pathways between these groups found greater 
post-prandial glucagon-like peptide- 1 (GLP- 1) secre-
tion with RYGB compared with sleeve gastrectomy. This, 
coupled with evidence that GLP- 1 receptors are present 
in the choroid plexus, suggests that GLP- 1 may modu-
late ICP. Indeed an early phase randomised control trial 
evaluating the GLP- 1 receptor agonist, exenatide, found it 
reduced ICP in active IIH [25]. Greater dynamic changes 
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in circulating lipid metabolites (ceramides, glycerophos-
pholipids and lysoglycerophospholipids) were also seen 
with RYGB surgery compared to sleeve or banding sur-
gery, correlating with greater ICP reduction.

Together, these studies suggest that unique systemic 
metabolic changes occur in IIH, correlate with clini-
cal disease parameters, normalise following therapeutic 

Fig. 1   Proposed pathophysiology of IIH. IIH is primarily a systemic 
metabolic disease associated with central adiposity in females. This 
is associated with a variety of adverse metabolic features including 
insulin and leptin resistance and adverse cardiovascular outcomes; 
as well as co-morbidities including polycystic ovarian syndrome, 
obstructive sleep apnoea and mental health disorders. Metabolic 
changes in IIH lead to raised ICP – we propose that increased CSF 
production at the choroid plexus mediated by androgen excess and 
changes in corticosteroid activity is the most important driver of this. 
The left hand side of the diagram outlines these pathways, and inset 

is a schema of important transporters involved in CSF secretion at 
the choroid plexus. On the right, there is also reduced CSF clearance 
due to outflow resistance which may be mediated by inflammatory 
changes causing glial-neuronal-vascular disruption and glymphatic 
dysfunction; as well as increased venous outflow resistance and 
venous sinus stenosis. The inset schema highlights major pathways of 
CSF clearance via the arachnoid granulations into the venous sinuses, 
and via parenchymal perivascular spaces of the glymphatic pathway 
into dural lymphatics and/or venous sinuses
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intervention and can determine treatment response inde-
pendent of weight loss.

IIH is Associated with Androgen Excess

Adipose tissue has a well-recognised endocrine function 
[26]. Adipocytes express several enzymes involved in steroi-
dogenesis [27] and have a role in pre-receptor activation and 
inactivation of androgens, which is tightly regulated [28]. 
Excess androgen generation has been reported in obesity 
[29], and adipose tissue is one source of the hyperandrogen-
ism seen in polycystic ovarian syndrome (PCOS) [30, 31]. 
In addition to this, in women androgens act on adipocytes 
to promote adipose accumulation, hypertrophy and insulin 
resistance, compounding the adverse phenotype.

Due to these observations, the role of androgens has been 
investigated in IIH. Hyperandrogenism has been associated 
with an earlier age of onset in IIH [32], although no correla-
tion was found with BMI or duration of IIH in this study. 
PCOS is recognised as a common co-morbidity in IIH [33, 
34] and, whilst not associated with visual or headache out-
comes, is associated with infertility [34]. Raised serum and 
CSF testosterone levels have been reported in IIH compared 
with controls [19, 35].

One study evaluated androgen levels in patients with IIH 
compared with age-, sex- and BMI-matched controls with 
either obesity alone or PCOS [35]. It found that patients 
with IIH had significantly elevated serum testosterone and 
reduced androstenedione compared with both PCOS and 
obesity, along with increased systemic activity of the andro-
gen activating enzyme 5α-reductase [35]. Androstenedione 
is a naturally produced steroid hormone which serves as an 
intermediate in the biosynthesis of testosterone. CSF andro-
gens were also measured in IIH compared with obese and 
lean controls and those with obesity, with higher testosterone 
and androstenedione levels found in IIH, although these did 
not correlate with BMI or clinical measures of IIH disease 
activity [35]. A recognized biological phenomenon is that 
of differential systemic and target tissue-specific hormone 
concentrations, such as noted here with reduced serum but 
increased CSF androstenedione. This may provide insights 
into the pathophysiology of IIH whereby high CSF andros-
tenedione concentrations provide a pool of androgen pre-
cursors for activation to testosterone by the choroid plexus.

IIH is Associated with Altered Glucocorticoid 
Regulation

Glucocorticoids are regulated systemically by the hypo-
thalamo-pituitary-adrenal axis, but is also regulated at 
a tissue level by two 11-beta-hydroxysteroid dehydro-
genases [11βHSD]. 11βHSD1 converts the inactive 
cortisone to active cortisol and is expressed widely, 

particularly in liver, adipose tissue, gonads and brain 
[36, 37]; 11βHSD2 inactivates cortisol to cortisone and 
is important in determining mineralocorticoid specificity 
in tissues [36].

Obesity is associated with changes in 11βHSD1 activ-
ity, with impaired activity in liver but increased activ-
ity in adipose tissue [38, 39]. In IIH, 11βHSD1 activity 
has been demonstrated to be elevated, systemically as 
well in adipose tissue, when compared to matched con-
trols [40] suggesting excess activity above that related 
to obesity alone. 11βHSD1 activity is reduced following 
therapeutic weight loss and correlates with reduction in 
ICP [40, 41].

IIH is Associated with Changes in Pro‑Inflammatory 
Cytokines

In obesity, systemic inflammatory changes are well recognised 
[42]. Adipose tissue is a source of cytokines, including tumour 
necrosis factor alpha [TNFα], interleukin [IL]− 6, IL- 8, IL- 1β 
and CC-motif chemokine ligand 2 [CCL2]] and others [42, 
43]. Production and release of these cytokines is activated by 
adipocyte hypertrophy and insulin resistance in obesity, as well 
as accumulation of pro-inflammatory macrophages in adipose 
tissue [42].

Inflammatory mechanisms have been explored in IIH. 
Various studies have measured serum and CSF cytokine 
levels in IIH, although with variable comparator popula-
tions. An early study found that CCL2 was elevated in 
CSF in IIH compared to healthy controls that were not 
BMI matched [17]. A subsequent study did not replicate 
this and found lower serum CCL2 in IIH, but the compara-
tor group was heterogenous including multiple sclerosis 
and other neurological disorders which may have differ-
ent inflammatory profiles [18]. Another study evaluating 
serum cytokines in IIH compared to matched controls found 
no difference in CCL2 levels but raised IL- 1β, IL- 8 and 
reduced TNFα [44]. Three other studies, however, reported 
raised serum TNFα in IIH [45–47], with two studies also 
reporting raised serum IL- 4 and IL- 10 [46, 47]. Interest-
ingly, in one study TNFα negatively correlated with lumbar 
puncture opening pressure [45]. IL- 6 [48] has also been 
reported to be elevated in CSF in IIH. A further study found 
raised CSF IL- 2 and IL- 17, with a relative increase in 
CSF:serum ratio compared to CSF:serum albumin ratio, 
suggestive of intrathecal synthesis of these cytokines [49].

Taken together, these studies indicate that IIH is associ-
ated with changes in pro-inflammatory cytokine expression 
in serum and CSF which differ from those seen in various 
control groups and other neurological conditions. Given the 
variable findings to date, it will be important to clarify any 
unique inflammatory cytokine signature in IIH compared to 
that associated with obesity alone.
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Systemic Changes in IIH Alter CSF 
Production and Clearance Causing Raised 
ICP

IIH, therefore, is associated with a unique phenotype 
of obesity-related metabolic dysregulation. The mecha-
nisms by which these changes lead to raised ICP, have 
been uncertain (hence the term ‘idiopathic’) but current 
research now provides valuable insights.

ICP is related to the volume of the three major compo-
nents of the intracranial space: brain parenchymal tissue; 
blood and vasculature; and the CSF. Contained within the 
rigid skull, changes in volume of these components results 
in a corresponding change in ICP; this is referred to as the 
Monro-Kellie doctrine [50]. In IIH, as diagnostic criteria 
exclude causes of increased tissue or blood volume, it is pre-
sumed that raised ICP is driven by an excess CSF volume.

Physiology of CSF Production

CSF is primarily produced in the choroid plexus – a highly 
vascular tissue residing within all the ventricles in the 
brain [51]. In adult humans the choroid plexus produces 
up to 500 mL of CSF per day, with the static volume of 
CSF (100 - 150 mL) circulating three to four times per day 
[52]. A relatively small volume of CSF is thought to be 
produced at extrachoroidal sites [53].

The mechanisms of CSF secretion at the choroid plexus, 
and movement of water in the brain generally, are interest-
ing and controversial. Water must pass between different 
compartments: blood, CSF and brain parenchyma; which 
are regulated by cellular barriers including the blood–brain 
barrier (BBB) and blood-CSF barrier [54, 55]. Traditionally, 
it was thought that water moved by simple diffusion driven 
by osmotic forces across the cell membrane. The discovery 
of aquaporins, transmembrane proteins, observed a more 
efficient way to move water across a cell membrane.

Aquaporin- 1 is of particular interest to CSF secre-
tion, being predominantly localised to the luminal mem-
brane of choroid plexus epithelial cells (CPECs) [54]. The 
Na+-K+ Adenosine triphosphatase (ATPase) is expressed 
on the luminal membrane CPECs where it exports Na+ 
into the CSF space, creating an osmotic gradient permit-
ting passive water export via AQP1 [53, 55]. AQP1 is 
absent on CPEC basal membrane and therefore does not 
mediate water permeability of the choroid plexus epi-
thelial membrane as a whole. Interestingly, knockout of 
AQP1 in mice only causes a modest reduction in CSF 
secretion by about 20% [56], suggesting this is not vital 
for CSF production.

Another observation is that CSF secretion can occur 
against an osmotic gradient, incompatible with passive 

water movement via AQP1 as a primary mechanism of 
secretion [53]. This may be explained by the co-transport 
of water by luminal transporters including the Na+/K+/2 
Cl− cotransporter [NKCC1] and Na+/HCO3− [NBCe2] 
co-transporter [57, 58]. Overall, accumulating evidence 
suggests that a variety of choroidal transporters are impor-
tant in CSF secretion, coupling solute and water transport 
across the choroid plexus epithelium. There remain signifi-
cant questions about the relative importance of individual 
transporters to this process.

Physiology of CSF Clearance

Absorption of CSF occurs at several sites. Arachnoid granu-
lations are protrusions of the arachnoid into the dural venous 
sinuses, providing outflow channels for CSF into the lumen 
of the venous sinuses [59]. Lymphatics provide another route 
of CSF absorption; drainage from the CSF space via cranial 
nerve sheaths and exit foramina, particularly the olfactory 
nerve, into the cervical lymphatic system has been recog-
nised in rodents [60, 61].

More recently the glymphatic system has been described, 
using small fluorescent CSF tracers, confined by the BBB, 
to demonstrate movement from the CSF compartment into 
brain parenchyma [62, 63]. In this proposed system [64], 
fluid derived from CSF influx at the brain surface travels 
along periarterial spaces and enters the interstitial spaces of 
the brain. Transport between perivascular spaces and brain 
interstitium is mediated by astrocytic endfeet gaps and aqua-
porin- 4 [AQP4]. Fluid is cleared along perivenous spaces of 
large cortical draining veins. Drainage from this space may 
be via the subarachnoid space and venous pathway or the 
dural lymphatic system, the presence of which has now been 
demonstrated in human imaging studies [65, 66].

Using an intrathecally-administered contrast agent and 
MRI imaging to trace CSF drainage in humans, one study 
demonstrated drainage of CSF tracer to cervical lymph 
nodes, the timing of which was delayed compared to that 
seen in rodents [67]. Lymph node enhancement coincided 
with peak glymphatic enhancement suggesting a more 
important role for glymphatic-lymphatic connections in 
humans than the CSF-lymphatic connections (such as those 
around cranial nerve sheaths) seen in rodents [67]. Studying 
these pathways in vivo in humans is challenging, and the 
precise nature of connections between CSF spaces, brain, 
glymphatic and lymphatic systems is to be established [61].

CSF Production and Clearance is Altered in IIH

CSF excess in IIH may be driven by either increased produc-
tion of CSF, impaired clearance, or both. CSF dynamics are 
challenging to study in humans. Imaging studies utilising 
phase contrast cine MRI have demonstrated increased CSF 
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flow in the cerebral aqueduct in IIH, suggesting increased 
CSF production at the choroid plexus, which reduces with 
treatment [68, 69]. Invasive measurement of ICP with 
intracranial monitoring or lumbar puncture can also pro-
vide information about CSF dynamics. ICP follows a pul-
satile waveform related to the cardiac cycle, and fluctuates 
with changes in body position and potentially with circadian 
cycles [70, 71]. Studies utilising invasive ICP monitoring 
in IIH demonstrate the core feature of raised intracranial 
pressure alongside raised ICP pulse amplitude, indicative 
of reduced craniospinal compliance, and resistance to CSF 
outflow [72–74].

Animal models have been developed to study the relation-
ship between obesity and CSF dynamics. Zucker rats have 
a leptin receptor mutation leading to significant obesity. An 
initial study found these rats had a higher ICP than lean con-
trols but there was no significant rise in ICP with weight gain 
over a 28-day study period [75]. CPEC AQP1 was found 
to be more highly expressed in obesity but there were no 
changes in the Na+/K+ ATPase expression [75]. High-fat diet 
[HFD] has been used to induce obesity in rats. In one study, 
female rats fed HFD demonstrated increased CSF secretion 
compared with controls, but did not demonstrate increased 
resistance to CSF drainage [76]. These findings contrast 
with a later report in a similar model of HFD rats finding 
raised ICP and increased CSF outflow resistance without 
increased CSF secretion [77]. The authors postulated this 
discrepancy may be due to differences in the rate of weight 
gain, which was much greater in the first study, or related to 
technical factors such as the necessary use of anaesthesia in 
obtaining measurements [78]. In a further study, HFD rats 
demonstrated weight gain with an associated increase in ICP, 
increased retinal nerve fibre layer thickness and cephalic 
cutaneous allodynia indicating a broader IIH-relevant phe-
notype [79].

Systemic Changes in IIH Drive CSF Hypersecretion

Many of the systemic metabolic changes seen in IIH have 
been linked to changes in CSF secretion.

Androgens

Human choroid plexus expresses androgen receptors, in 
addition to androgen activating enzymes [35]. Expression 
of membrane transporters in choroid plexus has been shown 
to vary in relation to the oestrus cycle, correlating with lev-
els of androstenedione and progesterone, in rats [80]. In rat 
CPECs, testosterone was found to increase Na+/K+ ATPase 
activity which, as outlined above, has a role in CSF secre-
tion [35]. Testosterone administration in lean female rats, 
mimicking the elevation in CSF testosterone seen in IIH, 
resulted in increased CSF production and raised ICP after 

four weeks of treatment [77]. Contrary to the result above, 
this was not associated with increased Na+/K+ ATPase activ-
ity but was associated with increased NKCC1 activity [77]. 
In another study, female obese Zucker rats were found to 
have no differences in ICP or CSF secretion compared with 
lean controls [81]. However, administration of testosterone 
resulted in increased CSF secretion rates [81]. Interestingly, 
this did not result in raised ICP and further analysis utilising 
CSF infusion studies found reduced CSF outflow resistance 
in the testosterone-treated rats [81]. Together this suggests 
testosterone drives hyperdynamic CSF circulation, with 
increased production and outflow.

Glucocorticoids

The choroid plexus also expresses 11βHSD1 [41, 82]. It has 
been proposed that increased 11βHSD1 activity in choroid 
plexus in IIH, with resultant increased glucocorticoid activ-
ity, may promote CSF secretion. Intraventricular hydrocor-
tisone was shown to increase CSF secretion in female rats 
following either a high fat or control diet [76]. Against a 
prominent role for glucocorticoids driving the raised ICP 
phenotype in IIH is their directed use in other pathologies, 
such as tumours, to reduce ICP [83]. Whilst it may be that 
this is due to specific actions in the setting of pathological 
brain oedema, a recent study demonstrated that acute and 
chronic administration of prednisolone or corticosterone 
resulted in reduced ICP in adult female rats [84].

Treatment with an 11βHSD1 inhibitor [AZD4017] was 
shown in a phase II randomised trial to reduce ICP at 12 
weeks, but this reduction was not significant compared to 
the placebo arm [85]. ICP reduction correlated with reduced 
serum cortisol:cortisone. Improved metabolic parameters 
including lipid profile and lean muscle mass have also been 
reported with 11βHSD1 inhibition [86]. Overall, there is evi-
dence for a role of glucocorticoids and 11βHSD1 dysregula-
tion in IIH, but whether the direct action of glucocorticoids 
on CSF secretion is a key driver of raised ICP is uncertain.

Cytokines

The effect of cytokines reported to be elevated in CSF in IIH 
on CSF dynamics has been explored in female rodents [76]. 
IL- 6, IL- 17, CCL2 and TNFα were administered intraven-
tricularly to female rats following either a control or high-fat 
diet [76]. TNFα resulted in increased CSF secretion only in 
those fed the control diet, whilst the others did not signifi-
cantly alter CSF secretion [76].

Mechanisms of Impaired CSF Clearance in IIH

Increased CSF outflow resistance in IIH is likely to be 
multifactorial. Sites of interest where such an effect may 
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be mediated in the CSF absorption and outflow pathways 
include the glymphatic and cranial lymphatic systems and 
cranial venous system.

Venous Outflow Resistance

A pressure gradient between the subarachnoid space and 
venous sinuses is important for CSF reabsorption, with pres-
sure in the subarachnoid space required to be 3–5 mmHg 
greater than venous sinus pressure to facilitate this [87]. 
Intuitively, it has been suggested that increased intra-abdom-
inal pressure in obesity transmits to raised central venous 
pressure, impeding venous return from the brain [88]. 
However, this does not account for the fact that most people 
living with obesity do not develop IIH, and this cannot be 
accounted for by differences in fat distribution which are 
now known to be similar in IIH and obesity alone [12, 89].

The role of venous sinus stenosis (VSS) in IIH is of 
increasing interest. An initial study reported VSS, evaluated 
by magnetic resonance venography (MRV), in 27/29 patients 
with IIH [90], whilst a recent MRV study found VSS in 60% 
of IIH patients [91]. In the latter study, presence of VSS was 
not associated with clinical outcomes including vision and 
headache [91]. Some consider that VSS in IIH is a second-
ary phenomenon due to extrinsic compression from raised 
ICP. This is supported by observations of reversal of VSS 
following CSF diversion [92, 93], and also recurrence of 
stenosis in stent-adjacent locations following VSS stenting 
[94]. Secondary VSS may lead to a positive feedback loop 
whereby resultant venous congestion contributes to reduced 
CSF absorption, further increasing ICP [87, 95]. Therefore, 
VSS may contribute to worsening of raised ICP in IIH but 
the initiating event in this cycle is likely to be raised ICP 
due to an alternative mechanism in the majority of patients 
with IIH [96].

Glymphatic Dysfunction in IIH

The description of the glymphatic system as an important 
mediator of brain water transport has led to hypotheses that 
dysfunction of this system may be important in the patho-
genesis of IIH [97].

Imaging studies have provided some evidence that glym-
phatic dysfunction is present in IIH. Following intrathecal 
administration of the CSF tracer gadobutrol to patients with 
IIH, increased tracer enrichment with delayed clearance in 
various brain regions was found, suggesting impaired glym-
phatic function [98]. Diffusion tensor imaging has also been 
used as a surrogate marker of glymphatic function, demon-
strating impaired diffusivity in perivascular spaces in IIH 
which correlated with grade of papilloedema [99].

Whilst these studies suggest impaired glymphatic func-
tion in IIH, they do not suggest its cause. Evidence suggests 

that the glia-neuro-vascular interface is disrupted in IIH, 
with reports of: changes in morphology and increased AQP4 
expression at astrocytic endfeet [100]; astrogliosis [100, 
101]; increased frequency of pathological mitochondria in 
astrocytic endfeet [102]; capillary damage and disruption of 
the BBB [101, 103]. These changes may reflect an inflam-
matory response, potentially due to BBB damage causing 
leakage of pro-inflammatory blood products or to systemic 
changes in IIH. Indeed, administration of the cytokine CCL2 
to control and high-fat diet rats caused increased resistance 
to CSF drainage [76]. Evidence of dysfunction at the level 
of the glymphatic system and glial-neuro-vascular interface 
requires further exploration as to whether changes are per-
manent and whether they contribute to symptoms of IIH in 
particular, cognitive dysfunction [98].

Insights from Cases that Fall 
into the Spectrum of IIH

The focus of this review has been on the mechanisms rel-
evant to the “typical” IIH phenotype, with a striking asso-
ciation with obesity and female gender. Cases where the 
diagnostic criteria for IIH are fulfilled in patients without 
this phenotype may provide insights into pathological mech-
anisms by which raised ICP may occur.

Transgender Patients with IIH

Multiple authors have reported cases of raised ICP in 
transgender patients, predominantly in those undergoing 
female-to-male gender-affirming hormone treatment with 
exogenous testosterone [104–114]. Most cases reported have 
also been classed as overweight, with BMI over 25 kg/m2, 
although a case with normal BMI has been reported [108]. 
These cases lend support for an important role of androgen 
excess in the development of raised ICP in IIH.

Male Patients with IIH

Whilst a clear majority of IIH cases occur in females, around 
13% of cases occur in males [116]. Several case series have 
reported on differences in clinical presentation, demographics 
and associated factors in males with IIH. Clinically, fewer men 
present with headache, but there appears to be an increased 
rates of visual disturbance and a higher risk of severe vision 
loss [117]. An initial report suggested a lower frequency of 
being ‘significantly overweight’ in males with IIH [118] but 
this was not defined and a larger series did not find a signifi-
cant difference in BMI between male and female patients with 
IIH [117]. Obstructive sleep apnoea (OSA) is more frequent 
in males compared to females with IIH [117, 119]. Finally, 
a case–control study identified that men with IIH reported 
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significantly more symptoms of hypoandrogenism compared 
to matched controls [120]. Cases of IIH in males have been 
reported in the setting of primary hypogonadism [121] and 
androgen deprivation therapy [122]. This contrasts with the 
hyperandrogenism associated with IIH in females, and it has 
been suggested that this could reflect a pathological ‘window’ 
of testosterone levels in IIH [20]. This sexually dimorphic 
association of androgens in IIH is consistent with the adverse 
metabolic phenotype is observed in males with hypoandro-
genism and females with hyperandrogenism, more generally 
[123].

Conclusions

The increasing evidence suggests that IIH is characterised 
by unique systemic metabolic aberrations with insulin 
resistance, hyperleptinaemia, hyperandrogenism, systemic 
and tissue-level corticosteroid dysregulation, metabolomic 
changes, a systemic pro-inflammatory state and increased 
risk of cardiovascular disease. These changes can lead to 
alterations in CSF production and clearance, predominantly 
CSF hypersecretion, and we suggest that this is the initiating 
event leading to raised ICP in IIH. Resistance to CSF out-
flow is also present in IIH and this is likely to be important 
in preventing hyperdynamic CSF circulation which could 
compensate for a hypersecretory state. In this perspective, 
venous sinus stenosis is likely a secondary event which leads 
to a positive feedback loop driving further increases in ICP.

Weight loss is presently the only disease-modifying 
therapy in IIH [124], reflecting the importance of obesity 
and adipose tissue, with its unique metabolic profile, to the 
underlying pathophysiology. As rapid weight gain appears 
to be a major risk factor for IIH, targeting the observed dys-
regulated androgen pathways may be a novel future treat-
ment option, as it may be that androgen excess is part of the 
initial trigger for IIH and the factor propagating the disease 
sequalae by driving CSF hypersecretion. Clinicians should 
be aware that IIH has an adverse metabolic phenotype with 
important associations and risks outside of those related 
to raised ICP and papilloedema. Treatments which act pri-
marily to reduce CSF secretion, such as acetazolamide, or 
increase CSF drainage, such as CSF diversion or venous 
sinus stenting, will not address these other important associ-
ations that confer morbidity. Improved understanding of the 
metabolic dysregulation in IIH and how this produces raised 
ICP is leading to exploration of novel targeted treatments.
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